Worked Solutions

1. (a)
$$d = 1 - (0.1 + 0.2 + 0.3 + 0.1) = 0.3$$
 (1)
(b) $P(-1 \le X < 2) = 0.2 + 0.3 + 0.3 = 0.8$ (2)
(c) $E(X) = (-2 \times 0.1) + (-1 \times 0.2) + 0 + (1 \times 0.3) + (2 \times 0.1) = 0.1$ (2)
(d) $E(3X + 2) = 3 \times 0.1 + 2 = 2.3$ (2)
2. (a) $\overline{t} = \frac{72}{106} = 0.6792$ (2)
(b) $S_t = \sqrt{\frac{172}{106} - 0.6792^2} = 1.078$ (3)

(c)
$$\overline{S} = 4t + 34 = 36.72$$
, $S_s = 4 \times S_t = 4.31$ (4)

3. (a) exclusive events cannot happen at the same time exhaustive events cover all possibilities between them (2)

Edexcel S1 Paper A

(c) P(B) = 0.3 + 0.15 = 0.45

(d)
$$P(B \cup C) = 0.3 + 0.15 + 0.25 + 0.1 = 0.8$$

4.
$$X \sim N(30, 3.5^2)$$

(a) $P(X < 28) = \Phi\left(\frac{28 - 30}{3.5}\right) = 0.2843$

(b)
$$P(X > 33) = 1 - \Phi\left(\frac{33 - 30}{3.5}\right) = 0.1949$$
 (3)

(c)
$$\Phi\left(\frac{x-30}{3.5}\right) = 0.95 \implies \frac{x-30}{3.5} = 1.645$$

 $\Rightarrow x = 30 + 3.5 \times 1.645 = 35.76$

: needs to leave home 36 mins earlier

$$8:45-36 \text{ mins} \simeq 8:09 \text{ a.m.}$$
 (3)

5. (a)
$$0 | 1 | 2 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 7 | 8 | 9$$

 $1 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 5 | 6 | 6 | 8$
 $2 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 6 | 8$
 $2 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 6 | 8$
 $4 | 5 | 2 | Key 1|4 = 14 years (3)$
(b) 5 years (1)

$$(b)$$
 5 years

(4)

(2)

(2)

(c) median – average of 15th and 16th values
$$\frac{11+11}{2} = 11$$
 years.
 Q_1 , 8th value, 5 years.
 Q_3 , 23rd value, 16 years. (6)

(d) Positively skewed. (1)

(e) As mode
$$<$$
 median $<$ mean also shows positive skew (1)

(b)
$$P(\text{Faulty}) = (0.3 \times 0.06) + (0.45 \times 0.05) + (0.25 \times 0.04) = 0.0505$$

(c)
$$P(B|F) = \frac{P(B \cap F)}{P(F)} = \frac{0.45 \times 0.05}{0.0505} = 0.4455$$
 (2)

(d)
$$P(A \cup C|G) = \frac{(0.3 \times 0.94) + (0.25 \times 0.96)}{1 - 0.0505} = 0.5498$$
 (3)

7. $\Sigma f = 720$ $\Sigma f^2 = 81600$ $\Sigma y = 1248$ $\Sigma y^2 = 196774$ $\Sigma fy = 117280$

$$S_{ff} = 81600 - \frac{(720)^2}{8} = 16800$$

 $S_{fy} = 117280 - \frac{720 \times 1248}{8} = 4960$

8

(a) Scatter graph.

(4)

(3)

(a) Scatter graph.
(b)
$$b = \frac{4960}{16800} = 0.295$$

 $a = \frac{1248}{8} - 0.295 \left(\frac{720}{8}\right) \simeq 129., \quad y = 129 + 0.295 f$
(7)

(2)

(c) line.

(d) a – shows that with no fertilizer you could expect a crop of 129 tomatoes b – for each extra 10 ml of fertilizer expect an extra 3 tomatoes. (2)

(e) No - only safe in limits given, actually has started to decline. (1)